Raport de faza HOLCOMM 2015 Etapa 4 – Demonstrarea functionalitatii sistemului,

Cristian Kusko (CO) Florin Adrian Popescu (P1) Mona Mihailescu (P2)

Experimentarea modelului functional, verificarea integritatii informatiei transmise prin comunicator optic prin spatiu liber pe baza de vortexuri optice (CO)

Propunem un model experimental de comunicator optic in spatiu liber in care informatia este codata cu valori ale momentului orbital unghiular. In acest sens fascicule helicoidale independente sunt suprapuse in acelasi canal de comunicatie cu scopul de a creste capacitatea de transmitere a informatiei. Informatia este codata cu vortexuri optice generate in urma difractiei unui fascicul gausian pe o masca de faza in reflexie. Decodarea consta in reconstructia fasciculului Gaussian initial fiind realizata cu holograme generate de calculator de tip furca.

In acest raport de faza am realizat experimental 2 modele de comunicator optic in spatiu liber. Primul este o varianta imbunatatita la montajul realizat in 2014 la care am realizat si decodarea. Al doilea model de comunicator a fost realizat folosind masti de faza spirala in reflexie proiectate, fabricate si caracterizate optic anul acesta. Asemanarea dintre aceste modele consta in metoda de codare, respectiv decodare si moduare ON-OFF key a fasciculelor gausiane incidente. Diferenta consta in folosirea de masti de faza spirala de ordine diferite pentru modelul nou, modelul prezentat in raportul anterior folosea masti de faza de acelasi ordin. O alta diferenta notabila este unghiul sub care cade radiatia incidenta pe mastile de faza spirala. In modelul de comunicator din raportul anterior radiatia incidenta facea un unghi diferit de 90° cu SPP, in modelul nou prezentat in acest raport radiatia incidenta face un unghi de 90° cu SPP. Acest lucru este facilitat de divizorul de fascicul (beam-splitter).

Primul model de comunicator optic se bazeaza pe superpozitia coaxiala a doua vortexuri optice cu valori ale OAM diferite, acestea fiind generate de masti de faza spirala ce opereaza in modul reflexie in transmitator. La receptor, decodarea starilor OAM transmise se realizeaza cu CGH de tip furca. Montajul acesta este versatil avand la componenta lui diode laser ce emit la lungimea de unda 633 nm si sunt modulate ON-OFF key.

In continuare sunt prezentate mastile fotolitografice proiectate in CleWin software in vederea fabricarii unor masti de faza spirala de ordin 3 respectiv 6. Conform rationamentului prezentat in rapoartele anterioare, mastile de faza spirala sunt fabricate cu un nivel de discretizare in 8 trepte. Pentru obtinerea acestor nivele s-au folosit 3 masti fotolitografice prezentate in Fig. 1.

Fig.1 Masti fotolitografice pentru SPP care genereaza vortexuri optice cu sarcina topological m=3 (a,b,c), respectiv m=6 (d,e,f). Mastile a), d) sunt pentru primul proces fotolitografic; mastile b), e) sunt pentru al doilea proces fotolitografic; mastile c), f) sunt pentru al treilea proces fotolitografic.

Procesul de fabricare a mastilor de faza spirala este prezentat in detaliu intr-unul dintre rapoartele de faza prezentate anterior. Acesta consta in 3 procese fotolitografice alternate succesiv de 3 procese de corodare in plasma cu ioni reactivi (corodare in plasma RIE), dupa care s-a efectuat o metalizare Cr-Au prin tehnica sputtering pentru obtinerea imbunatatirea reflectivitatii.

SPP fabricate sunt caracterizate structural cu ajutorul microscopului optic in Fig. 2, respectiv cu interferometrul de lumina alba (WLI) in Fig 3.

Fig. 2 Imagini optice pentru SPP care genereaza vortexuri optice cu sarcina topologica a) m=3; b) m=6.

Imaginile din fig. 2 sunt achizitionate cu microscopul optic si ofera o informatie calitativa asupra morfologiei SPP. Se poate observa o periodicitate a celor 8 nivele obtinute. Perioada este de 8 culori distincte: de la violet care corespunde nivelului cel mai putin corodat: aproximativ 1000 nm, la albastru-verde care corespunde nivelului cel mai adanc corodat – aproximativ 700 nm grosimea layerului de SiO₂. Numarul de treceri de la inaltimea maxima (violet) la cea minima (albastru-verde) determina sarcina topologica a vortexului optic generat de aceste masti de faza m=3, respectiv m=6.

Mastile de faza spirala sunt structuri cu 8 nivele de discretizare ceea ce presupune faptul ca fasciculul optic difractat de aceste configuratii va avea un drum optic discontinuu. Numarul de schimbari de la inaltimea minima la cea maxima in sensul orar va genera o sarcina topologica pozitiva egala cu numarul de diferente de faza de 2π . Similar, numarul de treceri de la inaltimea maxima la cea minima tot in sensul orar va genera un vortex optic cu sarcina topologica negativa egala cu numarul de diferente de faza de 2π . Calitatea optica a SPP fabricate nu este afectata de structura lor discontinua, fapt care poate fi observat in rezultatele experimentale.

O alta caracterizare functionala a fost realizata cu interferometrul de lumina alba. In Fig. 3a) si 3b) sunt ilustrate configuratile tridimensionale ale SPP cu m=3 si m=6, iar in Figurile 3c) si 3d) se arata configuratia in scala de gri cu tonurile mai inchise corespunzand adancimilor de corodare mari iar tonurile mai deschise corespunzand adancimilor de corodare mici.

Fig. 3. Profil tridimensional al SPP cu a) m=3; b) m=6; Profil bidimensional cu c) m=3; d) m=6.

Adancimea nivelelor s-a reprezentat printr-o sectiune transversala a SPP pentru m=3 in Fig. 4a) respectiv m=6 in Fig. 4b). Rezultatele sintetizate in tabelul 1 indica faptul ca diferenta intre adancimea maxima si cea minima in cazul sectiunii transversale a SPP din Fig. 3c) de 318.8-320.1 nm in vreme ce diferentele de nivel a doua trepte consecutive se situeaza in jurul valorilor de 32.6-64.1 nm. Rezultatele sintetizate in tabelul 1 indica faptul ca diferenta intre adancimea maxima si cea minima in cazul sectiunii transversale a SPP din Fig. 3d) de aproximativ 291.9-307nm in vreme ce diferentele de nivel a doua trepte consecutive se situeaza in jurul valorilor de 27.7-60.3 nm. In tabelul 2 pentru o sectiunea transversala din Fig.3 SPP pentru m=6 este de aproximativ 320nm in vreme ce diferentele de nivel se situeaza in jurul valorilor de 32.6-60.3 nm. Aceste rezultate indica faptul ca SPP realizate satisfac conditiile geometrice necesare pentru producerea vortexurilor optice.

Fig. 4. Grafic al sectiunii transversale S1 pentru adancimea nivelelor a) m=3; b) m=6

Tabel 1

$(nm) \rightarrow$	1	2	3	4	5	6	7	8	9
Δz (S1)	318.5	58	41.7	57.7	64.1	54.1	32.6	58.7	320.1

Tabel 2

(nm)	1	2	3	4	5	6	7	8	9	10	11	12
\rightarrow												
Δz	48.7	303.7	48.2	34.4	50.8	60.3	43.5	31.9	41.5	291.9	51.1	31.5

(S1)						

13	14	15	16	17	18	19
46.7	52.5	47.7	35.9	44.9	307	27.7

Comunicator

Propunem un nou model de comunicator in care informatia este codata cu valori diferite ale momentului orbital ungiular OAM. Principiul lui de functionare se bazeaza tot pe suprapunerea mai multor fascicule helicoidale independente in acelasi canal de comunicatii cu scopul de a creste capacitatea de transmitere a informatiei. Codarea informatiei se face prin generarea vortexurile optice cu SPP prezentate anterior. Informatia este transmisa in spatiu liber si ulterior decodificata cu ajutorul hologramelor generate de calculator de tip furca, astfel incat receptorul sa detecteze fascicule gausiene.

Doua diode laser care emit la lungimea de unda 633 nm sunt modulate ON-OFF key independent. Acestea ilumineaza cu fascicule gausiene 2 SPP-uri cu scopul de a genera vortexuri optice de diferite momente orbitale unghiulare. Montajul experimental este prezentat in Fig. 5. Fasciculul emergent de la dioda laser 1 (DL1) ilumineaza prin primul divizor de fascicul (beam splitter - BS) la incidenta normala prima SPP, este difractat de aceasta care este de ordin n si genereaza un vortex optic cu sarcina topologica n=3, in cazul nostru particular. Acest fascicul helicoidal este transmis prin al doilea divizor de fascicul (BS) si poate fi observat proiectat pe ecran (SCREEN). Fasciculul gausian generat de dioada laser DL 2 este de asemenea modulat ON-OFF key independent. Dupa aceasta este transmis prin al doilea beam-splitter si difractat de SPP de ordin m. In cazul nostru vortexul optic generat are sarcina topologica m=6. Dupa o aliniere fina, de mare precizie, aceste doua vortexuri optice cu sarcini topologice m=3, respectiv m=6, sunt suprapuse in acelasi canal de comunicatie la iesirea transmitatorului.

Fig. 5. Montaj experimental. Comunicator optic in spatiu liber folosind SPP in reflexie

In Fig. 6 este reprezentata superpozitia a doua vortexuri optice independente cu sarcina topological n=3 in centru respectiv m=6, in exterior. In Fig. 6a) este ilustrata simularea numerica bazata pe integrala de difractie Kirchhoff, prezentata intr-un raport de faza anterior. Fig. 6b) reprezinta realizarea experimentala a aceleiasi superpozitii prezentate in Fig. 6a) fiind cazul in care ambele diode laser sunt ON, iar ambele valori OAM sunt transmise. In Fig. 6c) dioda modulata DL 1 este OFF si dioda DL 2 este ON, astefel incat fasciculele transmise poarta informatia codata de vortexul optic cu sarcina topologica n=3. Pe de alta parte, in Fig. 6d) cand DL 1 este ON si DL 2 este OFF, este transmisa informatia codata de vortexul optic cu sarcina topologica m=6.

Fig. 6. Superpozitia a doua vortexuri optice, vortexul optic (m=3) in centru, vortexul optic (m=6) in exterior la iesirea transmitatorului a) cand ambele diode laser sunt ON numeric; b) cand ambele diode laser sunt ON experimental; c) cand DL 1 este ON experimental; d) cand DL 2 este ON experimental

Metoda aleasa pentru a detecta vortexurile optice si implicit de a decoda informatia transmisa este aceea de a folosi holograme de tip furca, mentionate in rapoartele de faza anterioare. Am generat in MATLAB doua CGH cu dislocatie de ordin 3, respectiv 6, care pot fi observate in Fig. 7a) repectiv Fig. 7b). Aceasta holograma este superpozitia unei unde plane cu o unda helicoidala. Marele avantaj al acesteia este faptul ca este independenta de lungimea de unda a fascicului optic incident.

Fig. 7. CGH de tip furca cu dislocatie de ordin a) 3; b) 6.

Decodarea s-a realizat numeric prin simularea difractiei unui vortex optic care se doreste a fi decodat pe una dintre hologramele prezentate in Fig. 7 prin calculul integralei Kirchhoff. Partea reala a campului electric obtinut in urma acestei difractii este prezentat in Fig. 8. Imaginea de difractie consta intr-un grup de vortexuri optice cu diferite sarcini topologice. In Fig. 8a) pot fi observate vortexuri optice cu m=0 (fascicul gausian), m=3 (vortexul optic incident), m=6; acest fapt demonstreaza decodarea vortexului optic incident cu n=3 folosind o CGH cu o dislocatie de ordin 3. In Fig. 8b) a fost detectat un vortex optic cu m=6 folosind o CGH cu o dislocatie de ordin 6, fapt ce a generat o figura de difractie cu vortexuri optice cu m=0 (reconstructia fasciculului gausian), m=6 (fascicul incident pe CGH), m=12.

Numarul de franje de culoare deschisa din Fig. 8 reprezinta valorile maxime a campului electric si determina sarcina topologica a unui vortex optic. Acest numar este egal cu numarul de franje inchise la culoare care corespund valorilor minime ale campului. Figura de difractie din Fig. 8a) este determinata de furca cu dislocatie de ordin 3, pe cand imaginea din 8b) este determinata de furca cu dislocatie de ordin 6.

a) b) Fig. 8. Detectia vortexurilor optice realizate numeric a) m=3 and b) m=6 difractate pe holograma generata de calculator de tip furca cu dislocatie de ordin a) 3; b) 6; – partea reala a campului electric

In raportul de faza 2014 s-a realizat un comunicator optic in spatiu liber care functioneaza dupa schema din Fig. 8. Principiul de functionare a fost explicat in detaliu in raportul precedent. 2 masti de faza spirala de acelasi ordin sunt configurate intr-un montaj cascada. 2 diode laser care opereaza in vizibil la 633 nm sunt difractate succesiv de aceste masti de faza, rezultatul fiind superpozitia a doua vortexuri optice de ordin m=4, respectiv m=8 in acelasi canal de comunicatie. In acest raport de faza sau obtinut rezultate inbunatatite care pot fi observate in Fig. 9.

Fig. 9. Diagrama montaj optic de comunicator in spatiu liber cu masti de faza spirala de acelasi ordin.

Fig. 10. Superpozitia a doua vortexuri optice cu n=4 si n+m=8 la iesirea transmitatorului optic cand ambele diode laser sunt ON a) numeric; b) experimental.

In aceasta faza a proiectului am realiza detectia vortexurilor optice transmise in spatiu liber dupa ce au fost generate cu ajutorul schemi din Fig. 9.

Pentru a detecta vortexuri optice, sau pentru a decoda informatia transmisa de acestea, s-a folosit o holograma generata cu ajutorul calculatorului a carei proces de fabricatie a fost descris in raportul anterior. Aceasta holograma este o superpozitie de doua holograme de tip furca una verticala, cu o dislocatie de ordin 8 si una orizontala de ordin 4 care se poate observa in Fig. 11a). In Fig. 11b)

este reprezentata partea reala a campului electric in urma difractiei unui fascicul gausian pe aceasta holograma compusa de tip furca. Pe primul rand al acestei retele de 9 vortexuri optice cu diferite sarcini topologice se poate observa un vortex optic cu m=-12, m=-4, m=4. Pe al doilea rand, se pot observa vortexuri optice cu sarcina topologica m=-8,m=0 (fasciculul gausian incident),m=8. Pe al treilea rand, se pot observa vortexuri optice cu sarcina topologica m=-4,m=4,m=12. Valorile acestea sunt determinate de numarul de franje albastre/rosii care corespund valorilor minime/maxime ale campului electric.

Fig. 11. a) CGH de tip furca compusa; b) difractia unui fascicul gausian pe aceasta holograma.

Explicatia numerelor topologice din Fig. 11b) este urmatoarea: cele din randul 2 sunt generate de furca de ordin 8, vortexurile de pe coloana a 2 sunt generate de furca de ordin 4. Celelalte sarcini topologice sunt determinate de superpozitia tuturor combinatiilor posibile ale vortexurilor optice (+/-4 si +/-8) fapt care duce la vortexuri optice cu sarcini topologice egale cu sumele lor algebrice. Atat in simulari cat si in experiment intensitatile vortexurilor optice rezultate in urma superpozitiei au intensitatea foarte slaba.

Detectia vortexurilor optice independente se realizeaza experimental cu holograma din Fig. 11a). Figura de difractie consta intr-o retea de vortexuri optice cu diferite sarcini topologice. Detectia unui vortex optic cu sarcina topologica m=4 poate fi observata in Fig. 12a). Pe primul rand se poate observa un vortex optic cu m=0, m=-4, m=-8. Pe al doilea rand, se pot observa vortexuri optice cu sarcina topologica m=8,m=4 (vortexul optic incident),m=0. Pe al treilea rand, se pot observa vortexuri optice cu sarcina topologica m=16,m=12,m=8. Acest fapt este confirmat de rezultatele simularii din Fig. 12 b) in care un vortex optic cu m=4 a fost difractat de CGH din Fig. 11a).

Fig. 12. Detectia vortexului optic cu sarcinal topologica m=4; a) experimenta; b) simulare

De asemnea, s-a realizat detectia unui vortex optic cu sarcina topologica m=8 prin difractia unui fascicul helicoidal de CGH din Fig. 11a). Rezultatul este prezentat in Fig. 13 in care s-a reprezentat partea reala a campului electric. Pe primul rand se poate observa un vortex optic cu m=4, m=0, m=-8. Pe al doilea rand, se pot observa vortexuri optice cu sarcina topologica m=4, m=8 (vortexul optic incident), m=12. Pe al treilea rand, se pot observa vortexuri optice cu sarcina topologica m=12, m=16, m=20.

Fig. 13. Detectia vortexului optic cu sarcinal topologica m=8 – simulare.

Experimentarea modelului functional, pentru rata de transmisie (P1)

A. Masuratori ale BER (Bit Error Rate) si ale Disponibilitatii in comunicatii optice prin atmosfera

Calitatea comunicatiilor optice prin atmosfera, exprimata prin parametrii de disponibilitate si BER (Bit Error Rate), este determinata prin caracteristicile legaturii de comunicatie si proprietatile statistice ale mediului de transmisie, in cazul nostru atmosfera terestra. Parametrii legaturii de comunicatie pot fi determinati cu precizie prin diverse metode de masurare care, cu foarte mici variatii determinate de complexitatea metodei, conduc cu o buna aproximatie la aceleasi rezultate.

Determinarea parametrilor statistici ai atmosferei pentru un anumit traseu de comunicatie este insa o problema pentru care nu se pot furniza modele certe cu aplicabilitate practica.

A.1. Modelul matematic si balanta energiei de radiatie laser pentru un sistem de comunicatii optice prin atmosfera

Modelul matematic include o ecuatie pentru determinarea puterii la emisie si o diagrama a nivelului de putere. Valorile folosite sunt considerate ca medii.

Structura generala a unei legaturi de comunicatie este descrisa in figura 1. Diagrama de putere descrie valori ale puterii in diferite puncte de-a lungul caii de comunicatie.

Figura 1

Parametrii asociati diagramei sunt:

 $\mathbf{P}_{m,TXA}$ puterea medie la apertura de emisie TXA

 $\mathbf{P}_{m,RXA}$ puterea medie la apertura de receptie RXA

 α_{sys} atenuarea datorata propagarii radiatiei laser

 \mathbf{a}_{atm} atenuarea introdusa de fenomene atmosferice

 L_{12} distanta intre TXA si RXA

Valoarea maxima admisibila pentru α_{atm} defineste limita M a legaturii de comunicatie, care reprezinta limita maxima a gamei dinamice Δ de sensibilitate a receptorului.

Pentru legatura de date realizata pentru proiectul HOLLCOM se pot lua in considerare urmatorii parametrii ai legaturii de comunicatie din tabelul urmator:

Lungimea de unda a radiatiei laser	850 nm
Puterea la emisie	8 mW
Nivelul minim la receptie	- 48 dBm la BER = 10^{-6}
Divergenta fasciculului	3 mrad
RXA - apertura la receptie	2700 mm^2
TXA - apertura la emisie	70 mm^2
Gama dinamica la receptie	50 dB
Distanta maxima a legaturii	200 m
Atenuarea totala la 200 m	25 dB

Vizibilitate directa	Minim 170 m
Frecventa de modulatie a radiatiei laser	1,25 GHz
Capacitatea de comunicatie	1 Gbps

A.2. Modelul caii de comunicatie

Caracteristicile atmosferei prin care radiatia laser se propaga afecteaza calitatea transmisiei de date. In general, atmosfera este un mediu neomogen si variabil in timp. Indicele de refractie variaza in functie de pozitia pe calea de comunicatie si de timp. Pe durata propagariii, radiatia laser este supusa atenuarii, care variaza si in functie de lungimea de unda.

Principalele fenomene atmosferice care afecteaza legatura de comunicatie sunt:

- scaderea intensitatii fasciculului optic prin imprastiere (scattering) si absorbtie datorate moleculelor diferitelor gaze si aerosolilor;

- fluctuatia nivelului de putere a radiatiei laser receptionate datorita turbulentei atmosferice;

- perturbatii datorate intreruperii fasciculului.

A.2.1. Atenuarea atmosferica

Característica de transmisie atmosferica T este descrisa de legea Beer:

$$T(L_{12}) = e^{-\alpha_e \cdot L_{12}}$$

unde L_{12} este lungimea legaturii optice, iar α_e este coeficientul de atenuare introdusa de atmosfera. Se ia in consideratie distanta de vizibilitate directa metereologica V_m , pentru care T = 0.05, astfel:

$$T(V_M) = e^{-\alpha_e \cdot V_M} = 0.05$$

Rezulta un coeficient de atenuare atmosferica:

$$\alpha_e = \frac{-\ln(0,05)}{V_M} = \frac{3}{V_M} km^{-1}$$

Cel mai important fenomen care influenteaza α_e in fereastra optica de comunicatie la lungimea de unda de 850 nm este atenuarea prin imprastiere (scattering) datorata particulelor continute in atmosfera $\alpha_{e,part}$. Dependenta acesteia de lungimea de unda se poate exprima astfel:

$$\alpha_{e,part}(\lambda) \approx \frac{3}{V_M} \left(\frac{\lambda}{550}\right)^{-0.585 \sqrt[3]{V_M}} \left[km^{-1}\right]$$

sau in scala logaritmica:

$$e^{-\alpha_{e,part} \cdot L_{12}} = 10^{-\frac{\alpha_{1,part}}{10}L_{12}}$$
$$\alpha_{e,part} = 0,23.\alpha_{1,part}$$

Rezulta:

unde
$$[\alpha_{e,part}] = \text{km}^{-1}$$
, iar pentru atenuarea specifica $[\alpha_{I,part}] = \text{dB.km}^{-1}$

La lungimea de unda de 850 nm, atenuarea atmosferica specifica in functie de conditiile atmosferice este prezentata in tabelul de mai jos:

V _m [km]	$\alpha_{1,part}$ [dB.km ⁻¹]	Conditii atmosferice
<0.08	>145	Ceata densa
0.08 - 1	10 - 145	Ceata moderata, Ploaie
		intensa
1 - 25	0,22 - 10	Ceata slaba, Ploaie moderata

25 - 60	0,1 la 0,22	Ceata foarte slaba, Ploaie
		slaba
>60	<0,1	Atmosfera clara

Ceata este unul din cel mai importanti factori care influenteaza distanta de lucru si fiabilitatea conexiunilor optice, deoarece persista de la cateva minute la cateva ore, evoluand relativ lent in comparatie cu turbulentele atmosferice.

A.2.2. Turbulente atmosferice si intreruperi ale fasciculului laser

In atmosfera, zonele in care apar gradiente de temperatura si de presiune creeaza zone cu indici diferiti de refractie. Diferitele neomogenitati din atmosfera au ca efect distorsionarea caracteristicii de directivitate a radiatiei laser.

Pentru atmosfera cu turbulenta redusa se poate aproxima o formula pentru estimarea atenuarii α_{turb} , generata numai de catre aceasta perturbatie

$$\alpha_{turb} \approx 10\log(1-\sqrt{\sigma_{I,rel}^2})$$

Atenuarea este descrisa pe scurt in tabelul de mai jos. Acest fenomen este considerat unul cu evolutie rapida. Conexiunile optice din zone cu vegetatie bogata din zonele suburbane sunt supuse acestor turbulente, inclusiv prin perturbatii generate de

zborul pasarilor.

α_{turb} [dB]	Grad de turbulenta
3,2	Slab
0,8	Foarte slab
0,3	Calm

A.3. Masurarea BER si a disponibilitatii

A.3.1. Definirea BER si a disponibilitatii

BER (Bit Error Rate, sau "frecventa de aparitie a unui bit eronat") poate fi estimata prin formula:

$$BER \approx \frac{n_e}{N}$$

unde n_e reprezinta numarul de biti eronati reventionati, iar N_B este numarul de biti transmisi pentru o perioada suficient de mare de timp.

O perioada de timp de *indisponibilitate* se considera din momentul in care incepe un mesaj care contine cel putin un bit eronat (de exemplu, in momentul detectiei unui pachet Ethernet eronat) pana in momentul in care s-a confirmat receptia unui mesaj corect, fara nici un bit eronat.

Timpul total de indisponibilitate t_{un} este suma intervalelor partiale de indisponibilitate pe perioada totala de observatie. Astfel, procentajul de indisponibilitate a legaturii optice P_{un} se poate determina conform relatiei:

$$P_{un} = \frac{t_{un}}{t_{total}}.100$$

Cu toate ca specificarea BER si P_{un} ofera informatii pretioase pentru estimarea increderii intr-o legatura optica de date prin atmosfera, in multe cazuri specificarea duratei masuratorilor si a conditiilor in care

au fost efectuate masuratorile aduce informatii decisive pentru caracterizarea comportarii canalului de comunicatie.

A.3.2. Metoda alternativa pentru masurarea BER

Importanta masurarii BER si a disponibilitatii conexiunilor in retelele de date este demonstrata si de multitudinea de echipamente si de aplicatii software care caracterizeaza cu precizie canalele de comunicatie in vederea optimizarii acestora si detectia segmentelor de retea care produc congestii. In cazul in care nu este necesara o caracterizare extrem de precisa a canalului de comunicatie si in care este suficienta estimarea ordinului de marime in care se inscrie BER si o eroare de estimare de $\pm 1\%$ a disponibilitatii, se pot utiliza cu succes metode alternative.

Una din aceste metode, care a fost folosita pentru estimarea BER pentru o conexiune optica prin atmosfera utilizand echipamentele de comunicatii dezvoltate in cadrul proiectului de fata, este descrisa in continuare (Figura 2):

Echipamentele de comunicatie optica FSO1 si FSO2 au fost aliniate optic pentru realizarea unei cai de comunicatie la viteza de 1Gbps. Echipamentele au fost conectate prin cabluri UTP cat.6 cu lungimi de 2 m (pentru eliminarea erorilor de transmisie prin cablu), fiecare la cate un calculator cu interfata GigaEthernet si s-a configurat o retea locala la viteza de 1Gbps in care cele doua calculatoare au primit cate o adresa IP4, 192.168.1.1 si 192.168.1.2.

Pentru a efectua testari in laborator nu s-a folosit optica pentru receptie, astfel incat apertura RXA a fost aceea a fotodiodei in avalansa folosite de catre receptorul optoelectronic (aproximativ 0.2 mm²). Atenuarea introdusa astfel de catre simpla modificare a distantei L_{12} dintre cele doua echipamente de comunicatii optice poate simula cu usurinta diverse valori ale atenuarii si deci simularea unei gama largi de situatii reale. Pragul de sensibilitate al receptorului, cu valoarea de aproximativ 1µW, se atinge pentru o distanta de $L_{12} = 4$ metri de comunicatie optica la o valoare a divergentei fasciculului la emisie de 3 mrad.

Pentru generarea de pachete de date in format Ethernet de diferite lungimi, s-a folosit pe unul din calculatoare comanda *ping* intr-o fereastra PowerShell. De exemplu, in cazul descris de captura din figura 3, se utilizeaza o comanda ping care realizeaza o transmisie de la calculatorul cu adresa 192.168.1.2 la cel cu adresa 192.168.1.1 si inapoi a unui pachet cu continut aleator in lungime de 62500 octeti, adica un transfer bidirectional de 10^6 biti (fara a lua in considerare informatiile suplimentare introduse de cadrul Ethernet).

🔀 powershell.exe - Comandă rapidă —	-	×
PS C:\> ping -t -l 62500 192.168.1.1		^
Pinging 192.168.1.1 with 62500 bytes of data:		
Reply from 192.168.1.1: bytes=62500 time=28ms TTL=64 Reply from 192.168.1.1: bytes=62500 time=20ms TTL=64		
Reply from 192.168.1.1: bytes=62500 time=16ms TTL=64		
Reply from 192.168.1.1: bytes=62500 time=1015ms TTL=6	4	
Reply from 192.168.1.1: bytes=62500 time=69ms TTL=64		
Reply from 192.168.1.1: bytes=62500 time=93ms TTL=64		
Reply from 192.168.1.1: bytes=62500 time=107ms TTL=64	8	~

— • • •		~
⊢ıg	ura	3

Cazul din figura 3 a fost executat cu echipamentele in configuratia din figura 1, cu o distanta $L_{12} = 0.5$ metri , rulat pentru un numar de 1000 de "ping"-uri, fara eroare.

Putem cu usurinta sa tragem concluzia ca, in acest caz, cu o atenuare globala estimata de 26 dB, BER este mai mare de 10^{-9} , valoare cu trei ordine de marime mai mare decat aceea pentru echipamentele comerciale conventionale pentru distanta maxima de functionare.

Crescand progresiv valoarea L_{12} , la o distanta de 3,3 metri s-a ajuns in situatia din Figura 4, in care se pierde un cadru Ethernet la aproximativ 6 cadre transmise, ceea ce ne indica faptul ca atenuarea semmnalului la receptie a cresut semnificativ, si astfel BER a scazut in apropierea valorii de 10^{-6} , valoare egala cu aceea pentru echipamentele comerciale conventionale pentru distanta maxima de functionare.

E pou	vershell.	exe - Comandă rapidă		_	×
PS C:	<pre>> pin</pre>	ng -t -l 62500	0 192.168.1.1	L	
Pingi	ng 192	2.168.1.1 wit	h 62500 bytes	s of data:	
Reply	from	192.168.1.1:	bytes=62500	time=1042ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=48ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=59ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=33ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=43ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=146ms TTL=64	
Reques	st tir	ned out.			
Reply	from	192.168.1.1:	bytes=62500	time=963ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=964ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=38ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=39ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=89ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=71ms TTL=64	
Reque	st tir	ned out.			
Reply	from	192.168.1.1:	bytes=62500	time=38ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=1008ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=920ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=939ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=61ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=39ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=307ms TTL=64	
Reque	st tir	ned out.			
Reply	from	192.168.1.1:	bytes=62500	time=60ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=300ms TTL=64	
Reply	from	192.168.1.1:	bytes=62500	time=90ms TTL=64	

Figura 3

Marind distanta L_{12} la 4 metri, transferul de pachete la dimensiunea de 62500 octeti este sporadica (Figura 4). Prin scaderea dimensiunii pachetului la valoarea de 1515 octeti (dimensiunea normala maxima a unui pachet Ethernet), se observa o scadere a numarului de erori de transmisie (Figura 5), insa faptul ca acestea exista intr-un numar semnificativ ne permite sa tragem concluzia ca legatura de date se afla la limita de utilizare, oricum semnificativ sub valoarea BER = 10^{-6} .

Experimentarea modelului functional, verificarea caracterului securizat al informatiei (P2,CO)

Caracterul securizat al informatiei a fost verificat prin fascicule laser in care s-a folosit o suprapunere axiala de mai multe Laguerre-Gauss beams (LGBs), fiecare purtand un moment orbital (OAM - orbital angular momentum) propriu. Acestea au fost obtinute experimental si in simulare, pornind de la holograme generate pe computer, care vor fi folosite in unitatea de transmisie. La trecerea fascicolului laser prin ele, se formeaza o figura de difractie, caracterizata printr-o distributie de intensitate difractata (DID), iar maximul de ordinul +1 este folosit pentru a fi transmis prin spatiul liber. La incidenta acestuia cu o noua masca de citire (MC), continuta in unitatea de receptie, se va putea detecta prezenta anumitor valori ale OAM continute in fascicolul initial. Noutatea sistemului propus de noi consta in faptul ca simultan se poate detecta prezenta mai multor OAM diferite, in puncte aflate in diferite coordonate.

I. GENERAREA HOLOGRAMELOR DIN UNITATEA DE TRANSMISIE (HUT)

Generarea HUT porneste de la expresia analitica a campului corespunzator fasciculelor LGBs [1]

$$LG_{m} = A_{|m|} \exp\left[i\left(k\left(z - \frac{r^{2}}{2R}\right) + \Phi_{|m|}\right)\right]e^{-im\theta}$$
(1)

unde r este coordonata radiala, iar m este valoarea OAM. Amplitudinea are expresia:

$$A_{|m|} = \sqrt{I} \sqrt{2/(\pi (|m|!))} (\sqrt{2}r/w)^{|m|} \exp(-r^2/w^2)$$
(2)

unde, talia fascicolului are expresia $w(z) = w_0 \sqrt{1 + (z/z_R)^2}$ unde z este coordonata de-a lungul directiei de propagare. Ceilalti parametri sunt:

intensitatea $I = P/w^2$ raza de curbura $R = z \cdot (1 + (z_R / z)^2)$ faza Gouy $\Phi_{|m|} = (|m| + 1) \arctan(z / z_R)$

Vectorul de unda este $k = 2\pi / \lambda$, iar w_0 este talia la z=0 si distanta Rayleigh este $z_R = \pi \cdot w_0^2 / \lambda$, λ este lungimea de unda a laserului folosit.

Suprapunand axial mai multe LGBs, se obtine o distributie spatiala descrisa prin expresia

$$A_M = \sum_{i=1}^M LG_{m_i} \tag{3}$$

Prima data a fost studiata distributia de intensitate intr-un singur LGB; care este sub forma unui inel luminos cu diametru proportional cu valoarea OAM. A fost investigata comportarea de-a lungul

axei parametrilor constructivi: talia, w, si intensitatea, I, in interiorul inelului. Se observa (Fig. 1) ca intensitatea scade drastic pentru valori mici ale w_0 , iar pentru valori mari ale w_0 , intensitatea ramane aproximativ constanta de-a lungul directiei de propagare. Talia creste mult la distante mici pentru valori mici ale w_0 .

Fig. 1 Comportarea axiala a maximului intensitatii din DID pentru un fascicul care contine o singura valoare OAM

Pornind de la studiul acestor DID, au fost deduse cateva relatii intre parametri geometrici si intensitate, care vor fi folositi in cazul suprapunerii fasciculelor multiple LGBs [2] 1.1valoarea maxima a intensitatii este $I_m / (4\sqrt{|m|})$, in cazul in care coordonata radiala este $w\sqrt{|m|/2}$. 1.2. campul electric pe directie radiala are valoarea la semiinaltime (FWHM) de: $\sqrt{2\ln(2)}w$

Pentru a avea o distributie uniforma a intensitatii difractate, doua conditii suplimentare trebuiesc indeplinite:

2.1. diferenta dintre razele vortexilor, in punctul in care intensitatea este maxima, este obtinuta pentru fiecare LGB, trebuie sa fie egala cu FWHM, ceea ce conduce la conditia $m_2 = \pm \left(\sqrt{|m_1|} + 2\sqrt{\ln(2)}\right)^2$ (Fig. (2a), curbele albastra si rosie).

Fig. 2. Distributia radiala a amplitudinii a) pentru diferite valori ale OAM b) pentru $m_1=3$ si alte valori OAM care nu indeplinesc conditia 2.1 (acestea fiind generate cu diferite valori ale intensitatilor initiale).

Pentru obtinerea superpozitiei LGBs, au fost generate HUT prin simularea interferentei dintre un fascicul obtinut cu eq. (3) si o unda plana descrisa de $\exp(ik \cdot f_s \cdot x)$, unde f_s este un parametru asociat cu frecventa spatiala si determina separarea spatiala in figura de difractie. Am studiat doua cazuri: unul in care conditia 2.1 este indeplinita, iar altul in care aceasta conditie nu este indeplinita. Acestea sunt hologramele din unitatea de transmisie (HUT).

Fig. 3 HUT obtinute prin interferenta dintre o unda plana si doua LGBs cu z=10, $w_0=50$, $I_1=I_2$: a) $m_1=3$, $m_2=11$, b) $m_1=5$, $m_2=15$, c) $m_1=5$, $m_2=20$, d) $m_1=-11$, $m_2=11$ e) $m_1=5$, $m_2=30$ (Sunt prezentate doar partile centrale ale hologramelor).

In cazul in care sunt suprapuse doua fascicule LGBs, HUT sunt de tipul celor din Fig. 3 si contin o discontinuitate centrala de ordinul m_1 iar radial sunt m_2 - m_1 discontinuitati de ordinul doi. Pentru cazul in care sunt suprapuse mai multe LGBs, se obtin HUT de tipul celor din Fig. 4, cu un caracter similar.

Fig. 4. HUT generate pentru a) M=3:(3, 11, 25), b) M=4:(3, 11, 25, 43), c) M=4:(3, 11, 25, 43), c\nd condi'ia 2.1. nu este indeplinita, d) M=4:(3, 11, 25, 43), cand fiecare LGB are o valoare diferita pentru w_0 , e) M=3:(4, 8, 12), f) M=3:(4, 8, -12). (regiunea centrala este prezentata pentru fiecare HUT).

II. STUDIUL PARAMETRILOR SI CARACTERUL SECURIZAT, IN CAZUL FASCICULELOR CARE CONTIN DOUA VALORI PENTRU OAM

Aceste HUT sunt transmise pe modulatorul spatial de lumina, iar maximul de ordinul +1 din figura de difractie prezinta diferite distributii spatiale de intensitate, in functie de valorile parametrilor constructivi. Pentru cazul a doua LGBs, se poate obtine unul din cazurile:

(1) interferenta constructiva cu un numar de $\delta m_h = |m_2| - |m_1|$ minime circulare asezate intr-o simetrie cilindrica (Fig. 5 (a, b)), atunci cand hologramele sunt generate cu valori OAM $|m_1| \neq |m_2|$ care indeplinesc conditia 2.1. Aceste DID degenereaza cand conditia 2.1. nu mai este indeplinita (Fig. 4 (c)

(2) distributie cu simetrie cilindrica si intensitate aproximativ constanta cu un numar de minime si petale radiale egal cu $\delta m_p = 2|m_1|$ (Fig. (5d)), atunci cand hologramele sunt generate cu $|m_2| = -|m_1|$.

(3) doua inele separare, fiecare corespunzand cate unei valori OAM, (Fig. 5 (e)), daca hologramele sunt generate cu $|m_1| \neq |m_2|$, si valori departe de cele care satisfac conditia 2.1.

Fig. 5. Imagini ale DID experimental (stanga) si simulate (dreapta) obtinute folosind holograme cu $w_0=50$, $I_1=I_2$, at z=10m a) $m_1=3$, $m_2=11$, b) $m_1=5$, $m_2=15$, c) $m_1=5$, $m_2=20$, d) $m_1=-11$, $m_2=11$, e) $m_1=5$, $m_2=30$.

In Fig. 6, sunt prezentate DID experimentale obtinute la acelasi *z*, pornind de la holograme generate cu diferite valori ale taliei initiale, w_0 , pentru toate cazurile (1)-(3). Aceleasi valori ale w_0 sunt folosite pentru ambele LGBs. Se observa faptul ca valorile w_0 au o influenta semnificativa in DID pentru cazul in care $|m_2| = -|m_1|$.

Fig. 6. DID provenind de la HUT geenrate cu diferite valori w0 a) $m_1=5 m_2=15$, b) $m_1=5 m_2=20$, c) $m_1=-11 m_2=11$, d) $m_1=5 m_2=30$. Pentru toate cazurile, de la stanga spre dreapta, $w_0 = 30$, 50, 70. Valorile de intensitate sunt constante.

S-a investigat robustetea DID de-a lungul axei de propagare, pentru valori fixe ale w_0 , I, m_1 si m_2 ; parametrul z are o influenta redusa pentru distante care ajung spre cativa kilometri (Fig. 7) pentru toate cazurile (1)-(3).

Fig. 7. DID de-a lungul axei de propagare (ambele LGBs au aceeasi valoare pentru w_0) a) $m_1=5$ $m_2=15$, b) $m_1=5$ $m_2=20$, c) $m_1=-11$ $m_2=11$, d) $m_1=5$ $m_2=30$. De la stanga spre dreapta, z=1 m, 1 km, 5 km. Valorile intensitatii sunt constante

Conditia 2.2 impune o valoare ideala pentru $I_2 = I_{ideal}$. Studiind experimental DID, se observa ca pentru valori in intervalul $I_2 \in [10^{-3} \cdot I_{ideal}, 10^3 \cdot I_{ideal}]$, pentru cazurile (1) si (3), intensitatea difractata ramane aproximativ constanta (Fig. 8) pentru o valoare fixa *z*. In cazul (2), situatia este diferita (Fig. 8).

Fig. 9. DID obtinut dupa trecerea fascicolului prin HUT si apoi ordinul +1 prin MC potrivite in cazurile a) $m_1=3$, $m_2=11$, c) $m_1=5$, $m_2=15$, d) DID final cand o MC nepotrivita este pozitionata in ordinul +1, e) $m_1=5$, $m_2=20$, f) $m_1=11$, $m_2=-11$, (detectat 11) g) $m_1=11$, $m_2=-11$ (detectat -11), h) $m_1=5$, $m_2=30$.

Informatia transferata are un caracter securizat deoarece numai mastile de citire (MC) generate cu anumite valori ale OAM, pot detecta valorile OAM continute in ordinul +1 ale fascicolului initial. Se observa faptul ca minimul central este inlocuit cu un maxim, in cazurile in care valorile OAM continute in mastile de citire, au o valoare egala, dar de semn contrar cu valorile continute in fascicolul initial.

IV. CARACTERUL SECURIZAT IN CAZUL FASCICULELOR CARE CONTIN MULTIPLE VALORI OAM

Montajul experimental (Fig. 10) contine o unitate de transmitere si o unitate de receptie. Prima este bazata pe un modulator spatial de lumina pe care se adreseaza HUT. A doua contine o masca de amplitudine realizata prin tehnica fotolitografierii, o camera video CCD si lentile. Aceast[masc[de amplitudine joaca rolul de masca de citire (MC).

Fascicolul laser incident pe modulatorul spatial de lumina este difractat de catre HUT care il

transforma in fascicul ce contine superpozitia axiala a mai multor LGBs securizand astfel mai multe valori ale OAM. Ordinul +1 este selectat si transmis prin spatiul liber pana la masca de citire MC care detecteaza valorile OAM continute securizat in fascicul transmis de prima unitate. MC din unitatea de receptie este calculata folosind suprapunerea perpendiculara a doua holograme, fiecare continand doua valori deferite ale OAM m_{r1} si m_{r2} . Doua cazuri pot fi intalnite: 1. Daca doar MC este pozitionata in calea fascicolului, DID va contine o matrice de 3x3 spoturi (Fig 11.b). Fiecare spot este sub forma unui inel cu diametrul proportional cu valoarea OAM corespunzatoare (S_{ij} i=1,2,3, j=1,2,3; unde i si j reprezinta numarul liniei si al coloanei).

2. Daca raza incidenta pe MC este de fapt ordinul +1 transmis prin HUT, atunci DID final se modifica corespunzator (Fig. 17)

Fig. 10 Aranjamentul experimental bazat pe o unitate de transmisie si una de receptie

Fig. 11. a) MC generata prin suprapunerea perpendiculara a doua OAM $m_1=4$ $m_2=12$, b) Schita DID care contine o matrice de 3x3 spoturi (S_{ij} i=1,2,3, j=1,2,3) obtinuta in cazul in care un fascicul gaussian este difractat cand o masca ca cea din Fig. 16a este trimisa pe modulatorul spatial de lumina [6].

MC sunt calculate astfel incat contin valori OAM egale dar de semn contrar cu cele din HUT. In acest caz, in DID final, obtinut pe CCD, minimul din centrul unui inel, este inlocuit cu un maxim. Acesta este indicatorul ca valoarea OAM dorita este detectata.

In studiile anterioare, in fiecare DID final era detectata o valoare OAM. Prin propunerea noastra, noi demonstram ca se pot detecta simultan multiple valori OAM in puncte de coordonate diferite. Aceasta se realizeaza prin faptul ca simultan, mai multe inele din matricea 3x3 isi schimba minimul central intr-un maxim. Conditia pentru a se intamla acestea este ca MC sa contina valori OAM egale dar de semn contrar cu cele din HUT. In Fig. 12 sunt cateva exemple in care una (Fig. 12 a, b), doua (Fig. 10 c, d), trei (Fig. 10 e) sau patru (Fig. 10 f) valori OAM sunt detectate simultan in puncte aflate in coordonate diferite.

Consideram cazul general in care valorile OAM nu satisfac conditia 2.1. Pe MC care contine valorile m_{r1} si m_{r2} , fascicolul transmis de catre prima unitate, contine LGBs cu: a) o valoare OAM egala cu m_{r1} , rezultand schimbarea minimului cu maxim, in inelul corespunzator spotului S_{21} (Fig. 17a),

b) o valoare OAM egala cu $-m_{r1}$, rezultand o schimbare a minimului cu maxim in inelul corespunzator spotului S₂₃ (Fig. 10b), c) doua valori OAM, egale cu m_{r1} , $m_{r1}+m_{r2}$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₂₁ si S₁₁ (Fig. 12c), d) doua valori OAM egale cu m_{r1} , $-(m_{r1}+m_{r2})$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₂₁ si S₃₃ (Fig. 17d), e) trei valori OAM egale cu m_{r1} , m_{r2} , $m_{r1}-m_{r2}$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₁₂, S₂₁ si S₃₁ (Fig. 17e), f) patru valori OAM egale cu m_{r1} , m_{r2} , $m_{r1}+m_{r2}$, $m_{r1}-m_{r2}$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₁₂, S₂₁ si S₃₁ (Fig. 17e), f) patru valori OAM egale cu m_{r1} , m_{r2} , $m_{r1}+m_{r2}$, $m_{r1}-m_{r2}$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₁₂, S₂₁ si S₃₁ (Fig. 17e), f) patru valori OAM egale cu m_{r1} , m_{r2} , $m_{r1}+m_{r2}$, $m_{r1}-m_{r2}$, rezultand schimbarea minimului cu maxim in inelele corespunzatoare spoturilor S₁₂, S_{21} S₁₁ si S₃₁ (Fig. 17f).

O comportare similara, dar cu eficienta mai mica, se obtine si in cazul in care LGBs sunt generate cu intensitati diferite de cea ideala.

Fig. 12 DID final dupa HUT si MC, care este inregistrat pe CCD. Am considerat cazul general cand valorile OAM nu satisfac conditia 2.1. MC sunt generate ca o suprapunere perpendiculara de OAM cu valorile mr_1 and mr_2 . HUT au fost generate folosind LGBs cu a) mr_1 , b) $-mr_1$, c) mr_1 , mr_1+mr_2 , d) mr_1 , $-(mr_1+mr_2)$, e) mr_1 , mr_2 , mr_1-mr_2 , f) mr_1 , mr_2 , mr_1+mr_2 , mr_1-mr_2 .

V. CONCLUZII

Figura de difractie DID a fost studiata in cazul suprapunerii axiale a doua sau mai multe fascicule LGBs.

Pentru cazul a doua LBBs, in functie de valorile parametrilor utilizati pentru generarea LGBs, figura de difractie se poate schimba de la simple cercuri concentrice pana la o figura cu petale radiale. A fost observata robustetea acestor fascicule de-a lungul directiei de propagare, folosind atat rezultate experimentale cat si simulari. A fost verificat faptul ca diferite valori ale OAM pot fi transmise, iar caracterul securizat s-a demonstrat prin faptul ca numai anumite MC puteau fi folosite in procesul de detectie: cele generate cu valori egale dar de semn contrar ale OAM fata de cele continute in HUT.

Pentru cazul suprapunerii axiale a mai multor fascicule LGBs, s-a observat ca, indiferent daca este indeplinita conditia 2.1. sau nu, DID isi pastreaza forma de-a lungul directiei de propagare, existand doar o rotire a sa. Valori relative ale intensitatii de pana la 50% din cea ideala, pastreaza vizibile detaliile DID. Parametrul w_0 influenteaza forma DID, putandu-se obtine 1) cercuri separate individuale pentru fiecare LGB, 2) petale aranjate concentric, 3) un aranjament hibrid.

Atunci cand doar ordinul +1 generat de HUT este transmis prin spatiul liber, plasand o MC in unitatea de receptie, se vor detecta valorile OAM continute in HUT, intr-o maniera noua: mai multe inele vor schimba simultan minimul central intr-un maxim. Acest lucru este posibil daca MC este generata prin suprapunerea perpendiculara a doua OAM cu valori egale, dar de semn schimbat cu cele continute in HUT.

In acest fel, am demonstrat ca este posibila detectia simultana a mai multor valori OAM, continute in suprapunerea axiala initiala de LGBs, in puncte plasate in diferite coordonate. Aceste experimente au implicatii in cresterea capacitatii de transmitere optica a informatiei prin spatiul liber.